Real-Time Capable System for Hand Gesture Recognition Using Hidden Markov Models in Stereo Color Image Sequences

نویسندگان

  • Mahmoud Elmezain
  • Ayoub Al-Hamadi
  • Bernd Michaelis
چکیده

This paper proposes a system to recognize the alphabets and numbers in real time from color image sequences by the motion trajectory of a single hand using Hidden Markov Models (HMM). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, YCbCr color space and depth information are used to detect hands and face in connection with morphological operation where Gaussian Mixture Model (GMM) is used for computing the skin probability. After the hand is detected and the centroid point of the hand region is determined, the tracking will take place in the further steps to determine the hand motion trajectory by using a search area around the hand region. In the feature extraction stage, the orientation is determined between two consecutive points from hand motion trajectory and then it is quantized to give a discrete vector that is used as input to HMM. The final stage so-called classification, Baum-Welch algorithm (BW) is used to do a full train for HMM parameters. The gesture of alphabets and numbers is recognized by using Left-Right Banded model (LRB) in conjunction with Forward algorithm. In our experiment, 720 trained gestures are used for training and also 360 tested gestures for testing. Our system recognizes the alphabets from A to Z and numbers from 0 to 9 and achieves an average recognition rate of 94.72%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Hand Motion Evaluation Using HMM

Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...

متن کامل

A Hidden Markov Model-Based Isolated and Meaningful Hand Gesture Recognition

Gesture recognition is a challenging task for extracting meaningful gesture from continuous hand motion. In this paper, we propose an automatic system that recognizes isolated gesture, in addition meaningful gesture from continuous hand motion for Arabic numbers from 0 to 9 in real-time based on Hidden Markov Models (HMM). In order to handle isolated gesture, HMM using Ergodic, Left-Right (LR) ...

متن کامل

Hand Gesture Recognition Based on Combined Features Extraction

Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and pr...

متن کامل

Data Gathering for Gesture Recognition Systems Based on Mono Color-, Stereo Color- and Thermal Cameras

In this paper, we present our results of automatic gesture recognition systems using different types of cameras in order to compare them in reference to their performances in segmentation. The acquired image segments provide the data for further analysis. The images of a single camera system are mostly used as input data in the research area of gesture recognition. In comparison to that, the an...

متن کامل

Recognition of 3D-Pointing Gestures for Human-Robot-Interaction

We present a system capable of visually detecting pointing gestures performed by a person interacting with a robot. The 3Dtrajectories of the person’s head and hands are extracted from image sequences provided by a stereo camera. We use Hidden Markov Models trained on different phases of sample pointing gestures to detect the occurrence of pointing gestures. For the estimation of pointing direc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of WSCG

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2008